1. Materials

Acceptable Materials:

XPS Foam
Extruded Polystyrene (blue and pink)

MDF
LDF
Plywood
Hardwood (Except Poplar)

Materials Requiring Approval:

EPS Foam
Expanded Polystyrene (white bead foam)

Acrylic
Polyethylene
Plaster

Prohibited Materials:

Metal
Glass
Fabric

2. Tool List

Tool 1: 1/4" Square End Mill
Tool 2: 1/4" Ball End Mill
Tool 3: 1/2" Square End Mill
Tool 4: 1/2" Compression
Tool 5: 1/2" Ball End Mill
Tool 6: 1/8" Drill
Tool 7: Open
Tool 8: Open
3. Common Machining Operations

Profiling

Description: Operation used to cut 2D line work and paths

Tools: 1, 3, and 4

Typical Uses:
1. Cut pieces out of sheet stock
2. Perform perimeter cut after surfacing operations

Pocketing

Description: Operation used to surface 2D regions

Tools: 1 and 3

Typical Uses:
1. Cut flat bottomed recessed areas into stock

Horizontal Roughing

Description: Roughing, or rough cutting, 3D surfaces

Tools: 1 and 3

Typical Uses:
1. Prepare for parallel finishing operation
2. Create “stepped” surfaces

Parallel Finishing

Description: Detail finishing of 3D surfaces

Tools: 2 and 5

Typical Uses:
1. Creating smooth 3D surfaces

Drilling

Description: Drilling holes

Tools: 6

Typical Uses:
1. Create holes to locate material hold down screws
4. Feeds, Speeds, and Max Cut Depths

Tool 1: 1/4" Square End Mill

<table>
<thead>
<tr>
<th>Material</th>
<th>Foam</th>
<th>MDF</th>
<th>Plywood</th>
<th>Hardwood</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cut Feed Rate (IPM)</td>
<td>150</td>
<td>150</td>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td>All other Feed Rates (IPM)</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speed (RPM)</td>
<td>12,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max Cut Depth</td>
<td>2"</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tool 2: 1/4" Ball End Mill

<table>
<thead>
<tr>
<th>Material</th>
<th>Foam</th>
<th>MDF</th>
<th>Plywood</th>
<th>Hardwood</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cut Feed Rate (IPM)</td>
<td>145-190</td>
<td>145-190</td>
<td>120-170</td>
<td>120-170</td>
</tr>
<tr>
<td>All other Feed Rates (IPM)</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speed (RPM)</td>
<td>12,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max Cut Depth</td>
<td>1-1/2"</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tool 3: 1/2" Square End Mill

<table>
<thead>
<tr>
<th>Material</th>
<th>Foam</th>
<th>MDF</th>
<th>Plywood</th>
<th>Hardwood</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cut Feed Rate (IPM)</td>
<td>230</td>
<td>230</td>
<td>140</td>
<td>140</td>
</tr>
<tr>
<td>All other Feed Rates (IPM)</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speed (RPM)</td>
<td>12,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max Cut Depth</td>
<td>2"</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tool 4: 1/2" Compression

<table>
<thead>
<tr>
<th>Material</th>
<th>Foam</th>
<th>MDF</th>
<th>Plywood</th>
<th>Hardwood</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cut Feed Rate (IPM)</td>
<td>270</td>
<td>270</td>
<td>190</td>
<td>190</td>
</tr>
<tr>
<td>All other Feed Rates (IPM)</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speed (RPM)</td>
<td>12,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max Cut Depth</td>
<td>2-1/2"</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tool 5: 1/2" Ball End Mill

<table>
<thead>
<tr>
<th>Material</th>
<th>Foam</th>
<th>MDF</th>
<th>Plywood</th>
<th>Hardwood</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cut Feed Rate (IPM)</td>
<td>190-240</td>
<td>190-240</td>
<td>190-220</td>
<td>190-220</td>
</tr>
<tr>
<td>All other Feed Rates (IPM)</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speed (RPM)</td>
<td>12,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max Cut Depth</td>
<td>2-1/2"</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tool 6: 1/8" Drill

<table>
<thead>
<tr>
<th>Material</th>
<th>Foam</th>
<th>MDF</th>
<th>Plywood</th>
<th>Hardwood</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cut Feed Rate (IPM)</td>
<td>50</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>All other Feed Rates (IPM)</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speed (RPM)</td>
<td>6,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max Cut Depth</td>
<td>2"</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5. Stepdowns & Stepovers

<table>
<thead>
<tr>
<th>Material</th>
<th>Foam</th>
<th>MDF</th>
<th>Plywood</th>
<th>Hardwood</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stepover (% of bit diameter)</td>
<td>75</td>
<td>50</td>
<td>35</td>
<td>25</td>
</tr>
</tbody>
</table>

Max Stepover Distance: Horizontal Roughing & Pocketing

<table>
<thead>
<tr>
<th>Material</th>
<th>Foam</th>
<th>MDF</th>
<th>Plywood</th>
<th>Hardwood</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stepover (% of bit diameter)</td>
<td>75% - 50%</td>
<td>50% - 35%</td>
<td>35% - 25%</td>
<td>25% - 20%</td>
</tr>
</tbody>
</table>

Max Stepover Distance: Parallel Finishing

<table>
<thead>
<tr>
<th>Material</th>
<th>Foam</th>
<th>MDF</th>
<th>Plywood</th>
<th>Hardwood</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stepover (% of bit diameter)</td>
<td>75</td>
<td>50</td>
<td>25</td>
<td>25</td>
</tr>
</tbody>
</table>

* Tool 4 (1/2 Compression) stepdown percentages can be increased by 25%.*

* Indicates a special tool setting.**
6A. File Setup

1. Launch Rhino 6 & Set Model Units to Inches

Type “units” into the command bar to display the document properties dialog box.

2. Launch RhinoCAM 2019

If the RhinoCAM window is not visible, type “RhinoCAM 2019” into the command bar to activate the plugin.

Ensure “MILL” is activated at the top left of the RhinoCAM 2019 window.
3. Open Tools Machining Objects

Select the icon with the image of a tool directly to the right of the “mill” icon at the top left of the RhinoCAM 2019 window to launch the tools machining objects window.

4. Load Tool Library

Download the “.vkb” file from the website. To load the library, click on the second icon from the left under the tools tab in the machining objects window.

Locate the “.vkb” file and click open in the lower right corner.

5. Tools Successfully Loaded

If the tool library is successfully loaded, the tool library will be listed in the machining objects window.
6. Move Parts to Origin 0,0,0

Purge all unnecessary geometry from the file and locate the parts to be milled at the origin. Parts can be moved to the origin by using the move command and typing 0,0,0.

7. Set Box Stock

Set the stock size that will be milled. Select the “Stock” icon and select “Box Stock” to launch the dialog window.

Important: Obtain the stock before programming and measure the stock thickness with calipers. If two or more pieces of stock are laminated (glued) together, the glue must be allowed to cure for **24 hours** prior to milling.

8. Input Stock Dimensions

The lower left corner of the stock should always be located at the origin. Thus, in the dialog box, the “**Corner Coordinates**” should read 0,0,0. Enter the length, width, and height in the “**Dimensions**” portion of the dialog box.

("L" corresponds to the dimension of stock along the X-axis; "W" corresponds to the dimension of stock along the Y-axis.)
9. Locating Geometry Within the Box Stock

The piece of stock must be larger than the part to be milled. This allows a perimeter border to be left around the stock for attachment to the spoil board.

Important: It is difficult to get stock perfectly aligned to the origin and stock edges may not be true. If an absolute size is desired for the final part, it is always advisable to perform all milling operations, then cut the final piece out of the stock at the end of the job.

10. Postscript

Download the “.spm” file from the website. Load the “TechnoOsai IJ Arcs” postscript.
6B. Drilling

1. Locate the Drill Machining Operation Icon

Under the program tab in the RhinoCAM dialog box, there is a “Machining Operations” drop down menu. “Drill” can be found under the “Holes” drop down menu.

2. Selecting Geometry

When the drill icon is selected, a dialog box will appear with a series of tabs located at the top. It is imperative to input information and check settings in every tab.

The first step is to select the geometry to perform the operation. Click “Select Drill Points/Circles”; the dialog box will disappear. Select the appropriate geometry, then press enter.

After the dialog box reappears, it will display what has been selected in the previous step in the list on the left. Once satisfied with the selection, click the “Tool” tab at the top to continue to the next step.
3. Select Tool For Drilling Operation

The tool library will appear in the list on the left.

Select the **1/8” Drill (Tool 6)** for this operation. Click the “**Feeds & Speeds**” tab on the top to continue to the next step.

4. Set Feeds & Speeds

Feeds & speeds correspond to the rate at which the CNC router moves the tool across the part and the RPM (revolutions per minute) that the router bit spins.

Feeds & speeds tables for each tool and material combination are located in a previous section of this guide. Use **50 in/min** for all other feed rates.

5. Clearance Plane

Establishing a clearance plane determines how far the router bit will be away from the stock during transfers. It is important that the clearance plane is always above the stock so that there is no contact during transfer.

Set the clearance plane **0.5”** above the maximum height (or max Z value) of the stock.

Under cut transfer method, select “**Clearance Plane**”.
6. Set Cut Parameters

When drilling basic holes, select “Standard Drill”.

Input the depth of the hole you want to drill under “Drill Depth”. If the intent is to drill completely through the stock, it is advised to add 0.03” to the drill depth to account for variations in the stock. (In other words, if the stock was 1”, input the drill value as 1.03”.)

Set the location of drill points. Always locate drill points at the top of the part.

The dwell setting provides a delay during the drilling operation. Set dwell to “off”.

The approach distance is the distance above the part where the specified feed rate is applied. Set the approach distance to 0.5”.

7. Set Sorting

Sorting establishes the order that multiple holes are drilled. To optimize job time, it is recommended to set the sorting to “Minimum Distance Sort”.

8. Simulate

Once the tool operation is programmed, it can be visually inspected through a virtual simulation to ensure the desired result. To begin a simulation, select the operation to be simulated under the machining job.

If “Setup 1” is selected, all tool operations will be simulated. To start the simulation, select “Play” under the simulate tab at the top of the machining browser.
1. Locate the Horizontal Roughing Operation Icon

Under the program tab in the RhinoCAM dialog box, there is a “Machining Operations” drop down menu. “Horizontal Roughing” can be found under the “3 Axis” drop down menu.

2. Selecting Geometry

When the horizontal roughing icon is selected, a dialog box will appear with a series of tabs located at the top. It is imperative to input information and check settings in every tab.

The first step is to select the geometry to perform the operation. Click “Select Curve/Edge Regions”; the dialog box will disappear. Select the appropriate geometry, then press enter.

After the dialog box reappears, it will display what has been selected in the previous step in the list on the left. Once satisfied with the selection, click the “Tool” tab at the top to continue to the next step.
3. Select Tool For Horizontal Roughing Operation

The tool library will appear in the list on the left.

Select the 1/2" Square End Mill (Tool 3) for this operation. Always use the 1/2" Square End Mill if possible because it affords removing large quantities of material quicker than the 1/4" Square End Mill. Click the “Feeds & Speeds” tab on the top to continue to the next step.

To establish drive regions, use polylines located in a plane at the top of the stock. One way to create these polylines is to activate the top view, use the command “Make2D”, then relocate and align the line work with the top of the stock. It is always necessary to ensure curves are joined together.

4. Set Feeds & Speeds

Feeds & speeds correspond to the rate at which the CNC router moves the tool across the part and the RPM (revolutions per minute) that the router bit spins.

Feeds & speeds tables for each tool and material combination are located in a previous section of this guide. Use 50 in/min for all other feed rates.

5. Clearance Plane

Establishing a clearance plane determines how far the router bit will be away from the stock during transfers. It is important that the clearance plane is always above the stock so that there is no contact during transfer.

Set the clearance plane 0.5" above the maximum height (or max Z value) of the stock.

Under cut transfer method, select “Clearance Plane”.

![Image of tool selection and clearance plane setup]
6. Set Cut Parameters

The “Intol” and “Outol” should be set to 0.01.

The “Stock” setting under global parameters is the amount of material left beyond the finished part, or in other words, the amount of material left between the material being removed and final geometry. Set the stock to 0.0625” (1/16”).

Select “Offset” under the cavity/pocket regions cut patterns.

For cut direction, select “Conventional (Up Cut)”.

Select “Inside” under start point.

Input the “Stepover Distance” as a percentage of the tool diameter. The tables for each tool and material combination are located in a previous section of this guide.

7. Set Cut Levels

Stepdown controls the depth of material removed with each pass. The tables for each tool and material combination are located in a previous section of this guide.

Select “Depth First” under cut level ordering.

8. Engage/Retract

Engage and retract are parameters used to program a tool reaching a certain depth over a sloped path, rather than directly plunging to the specified depth in a single spot.

We recommend all these values to be set to “0”. (The concern that cuttings will be compressed under down cut bits is mitigated by conservative stepdowns.) Additionally, tear-out can occur if the end portion of a compression bit engages with the face of material for an extended period.
9. Advanced Cut Parameters

Ensure “Perform Arc Fitting” is selected.

10. Simulate

Once the tool operation is programmed, it can be visually inspected through a virtual simulation to ensure the desired result. To begin a simulation, select the operation to be simulated under the machining job. If “Setup 1” is selected, all tool operations will be simulated. To start the simulation, select “Play” under the simulate tab at the top of the machining browser.
1. Locate the Parallel Finishing Operation Icon

Under the program tab in the RhinoCAM dialog box, there is a “Machining Operations” drop down menu. “Parallel Finishing” can be found under the “3 Axis” drop down menu.

2. Selecting Geometry

When the parallel finishing icon is selected, a dialog box will appear with a series of tabs located at the top. It is imperative to input information and check settings in every tab.

The first step is to select the geometry to perform the operation. Click “Select Curve/Edge Regions”; the dialog box will disappear. Select the appropriate geometry, then press enter.

After the dialog box reappears, it will display what has been selected in the previous step in the list on the left. Once satisfied with the selection, click the “Tool” tab at the top to continue to the next step.
3. Select Tool For Parallel Finishing Operation

The tool library will appear in the list on the left.

Select the 1/4” Ball End Mill (Tool 2) or 1/2” Ball End Mill (Tool 5) for this operation. Always use the 1/2” Ball End Mill if possible because it affords removing large quantities of material quicker than the 1/4” Ball End Mill. Click the “Feeds & Speeds” tab on the top to continue to the next step.

4. Set Feeds & Speeds

Feeds & speeds correspond to the rate at which the CNC router moves the tool across the part and the RPM (revolutions per minute) that the router bit spins.

Feeds & speeds tables for each tool and material combination are located in a previous section of this guide. Use 50 in/min for all other feed rates.

5. Clearance Plane

Establishing a clearance plane determines how far the router bit will be away from the stock during transfers. It is important that the clearance plane is always above the stock so that there is no contact during transfer.

Set the clearance plane 0.5” above the maximum height (or max Z value) of the stock.

Under cut transfer method, select “Clearance Plane”.
6. Set Cut Parameters

The “Intol” and “Outol” should be set to 0.001.

The “Stock” setting should be set to 0.

For cut direction, select “Conventional (Up Cut)”. The “Angle of Cuts” can be adjusted.

Input the “Stepover Distance” as a percentage of the tool diameter. The tables for each tool and material combination are located in a previous section of this guide.

7. Z Containment

Z Containment is an advance feature used to restrict the level of a cut. Z Containment is typically not applicable.

8. Entry

Entry and exit parameters are used to allow a tool to reach a certain depth (or retract from a certain depth) over a sloped path rather than directly plunging (or withdrawing) in a single spot.

We recommend these values be set to “0” as they have little impact on the type of machining typically done.
9. Exit

Entry and exit parameters are used to allow a tool to reach a certain depth (or retract from a certain depth) over a sloped path rather than directly plunging (or withdrawing) in a single spot.

We recommend these values be set to “0” as they have little impact on the type of machining typically done.

10. Advanced Cut Parameters

Ensure “Perform Arc Fitting” is unchecked.

11. Set Sorting

Sorting establishes the order that parallel finishing operations are completed. To optimize job time, it is recommended to set the sorting to “Minimum Distance Sort”.

12. Simulate

Once the tool operation is programmed, it can be visually inspected through a virtual simulation to ensure the desired result. To begin a simulation, select the operation to be simulated under the machining job.

If “Setup 1” is selected, all tool operations will be simulated. To start the simulation, select “Play” under the simulate tab at the top of the machining browser.
6E. Pocketing

1. Locate the Pocketing Operation Icon

Under the program tab in the RhinoCAM dialog box, there is a “Machining Operations” drop down menu. “Pocketing” can be found under the “2 Axis” drop down menu.

2. Selecting Geometry

When the pocketing icon is selected, a dialog box will appear with a series of tabs located at the top. It is imperative to input information and check settings in every tab.

The first step is to select the geometry to perform the operation. Click “Select Curve/Edge Regions”; the dialog box will disappear. Select the appropriate geometry, then press enter.

After the dialog box reappears, it will display what has been selected in the previous step in the list on the left. Once satisfied with the selection, click the “Tool” tab at the top to continue to the next step.
3. Select Tool For Pocketing Operation

The tool library will appear in the list on the left.

Select the **1/4” Square End Mill (Tool 1)** or **1/2” Square End Mill (Tool 3)** for this operation. Always use the 1/2” Square End Mill if possible because it affords removing large quantities of material quicker than the 1/4” Square End Mill. Click the “**Feeds & Speeds**” tab on the top to continue to the next step.

4. Set Feeds & Speeds

Feeds & speeds correspond to the rate at which the CNC router moves the tool across the part and the RPM (revolutions per minute) that the router bit spins.

Feeds & speeds tables for each tool and material combination are located in a previous section of this guide. Use **50 in/min** for all other feed rates.

5. Clearance Plane

Establishing a clearance plane determines how far the router bit will be away from the stock during transfers. It is important that the clearance plane is always above the stock so that there is no contact during transfer.

Set the clearance plane **0.5”** above the maximum height (or max Z value) of the stock.

Under cut transfer method, select “**Clearance Plane**”.
6. Set Cut Parameters

The “Tolerance” should be set to 0.001.

The “Stock” setting should be set to 0.

Select “Offset” under cut pattern.

For cut direction, select “Conventional (Up Cut)”.

Select “Inside” under start point.

Input the “Stepover Distance” as a percentage of the tool diameter. The tables for each tool and material combination are located in a previous section of this guide.

7. Set Cut Levels

Always locate cut geometry at the “top” of the part.

“Total Cut Depth” specifies the total overall desired depth of a pocket. This is divided into two parts: “Rough Depth” and “Finish Depth”. The “Rough Depth” is typically larger than the “Finish Depth”.

“Rough Depth/Cut” and “Finish Depth/Cut” specify the depth of each cut level. The maximum stepdown tables for each tool and material combination are located in a previous section of this guide. (If using a compression bit, the minimum rough depth per cut must be 0.25”.)

Select “Depth First” under cut level ordering.

8. Pocketing Entry/Exit

Entry and exit are parameters used to program a tool reaching a certain depth over a sloped path, rather than directly plunging to the specified depth in a single spot.

We recommend all these values to be set to “0”. (The concern that cuttings will be compressed under down cut bits is mitigated by conservative stepdowns.) Additionally, tear-out can occur if the end portion of a compression bit engages with the face of material for an extended period.
9. Advanced Cut Parameters

Ensure “Perform Arc Fitting” is selected.

10. Set Sorting

Sorting establishes the order that pocketing operations are completed. To optimize job time, it is recommended to set the sorting to “Minimum Distance Sort”.

11. Simulate

Once the tool operation is programmed, it can be visually inspected through a virtual simulation to ensure the desired result. To begin a simulation, select the operation to be simulated under the machining job.

If “Setup 1” is selected, all tool operations will be simulated. To start the simulation, select “Play” under the simulate tab at the top of the machining browser.
1. Locate the Profiling Operation Icon

Under the program tab in the RhinoCAM dialog box, there is a “Machining Operations” drop down menu. “Profiling” can be found under the “2 Axis” drop down menu.

2. Selecting Geometry

When the profiling icon is selected, a dialog box will appear with a series of tabs located at the top. It is imperative to input information and check settings in every tab.

The first step will be to select the geometry to perform the operation. Click “Select Curve/Edge Regions”; the dialog box will disappear. Select the appropriate geometry, then press enter.

After the dialog box reappears, it will display what has been selected in the previous step in the list on the left. Once satisfied with the selection, click the “Tool” tab at the top to continue to the next step.
3. Select Tool For Profiling Operation

The tool library will appear in the list on the left. Select the 1/2” compression bit (tool 4) if cutting completely through the material.

If any of the following are true, the 1/4” or 1/2” square end mills (tools 1 and 3) should be used for profiling:

1. The material is less than 0.25” thick
2. The depth of profile cut is less than 0.25”
3. Width of profile cut needs to be 0.25”

4. Set Feeds & Speeds

Feeds & speeds correspond to the rate at which the CNC router moves the tool across the part and the RPM (revolutions per minute) that the router bit spins.

Feeds & speeds tables for each tool and material combination are located in a previous section of this guide. Use 50 in/min for all other feed rates.

5. Clearance Plane

Establishing a clearance plane determines how far the router bit will be away from the stock during transfers. It is important that the clearance plane is always above the stock so that there is no contact during transfer.

Set the clearance plane 0.5” above the maximum height (or max Z value) of the stock.

Under cut transfer method, select “Clearance Plane”.
6. Set Cut Parameters

The “Tolerance” should be set to 0.001.

The “Stock” setting should be set to 0.

For cut direction, select “Conventional (Up Cut)”.

Select “Outside” or “Inside”. To cut out parts, select “Outside”. To cut out holes or voids within parts, select “Inside”.

For open curves, ensure “Use Outside/Inside for Closed Curves” is not selected and select “Right” or “Left” side.

For programming organization, it is advised to keep profile cuts the same width as the tool diameter. Therefore, both “Total Cut Width” and “Step/Cut” should be set to “0”. If a cut is desired to have a greater width than the tool diameter, it is recommended to use a pocketing operation.

7. Set Cut Levels

Always locate cut geometry at the “top” of the part.

“Total Cut Depth” specifies the total overall desired profile depth. This is divided into two parts: “Rough Depth” and “Finish Depth”. The “Rough Depth” is typically larger than the “Finish Depth”.

“Rough Depth/Cut” and “Finish Depth/Cut” specify the depth of each cut level. The maximum stepdown tables for each tool and material combination are located in a previous section of this guide. A compression bit is recommended for profiling. (If using a compression bit, the minimum rough depth per cut must be 0.25”.)

If the intent is to cut completely through the stock, it is advised to add 0.03” to the total cut depth to account for variations in the stock. In other words, if the stock was 1”, input the total cut depth as 1.03”.

Select “Depth First” under cut level ordering.

8. Entry/Exit

Select “None” for both entry motions and exit motions. Ensure “Apply entry/exit at each cut level” is unchecked.
9. Advanced Cut Parameters

Ensure “Perform Arc Fitting” is selected.

Bridging is required for profile cuts. Bridges retain the connection between the stock and piece being milled. The purpose of bridging is to ensure parts don’t move during the milling process.

A minimum of (2) bridges per side are required, but more bridges are advisable if the part is very large.

10. Cornering Parameters

The defaults are recommended for corner parameters.

11. Set Sorting

Sorting establishes the order that pocketing operations are completed. To optimize job time, it is recommended to set the sorting to “**Minimum Distance Sort**”.
12. Simulate

Once the tool operation is programmed, it can be visually inspected through a virtual simulation to ensure the desired result. To begin a simulation, select the operation to be simulated under the machining job. If “Setup 1” is selected, all tool operations will be simulated. To start the simulation, select “Play” under the simulate tab at the top of the machining browser.
7. Simulation Overview

Original Geometry

1. Drilling

2. Horizontal Roughing

3. Parallel Finishing

4. Pocketing

5. Profiling
8. Estimating Time & Posting

1. Information

Once the tool operations are programmed, right click “Setup 1” and select information.

2. Machining Operations Information

Selecting information will display a dialog box showing each tool operation, the tool required for that operation, and machine time. The total machining time will also be displayed.
3. Post

The job can be “posted”, or converted to G-code, by right clicking “Setup 1” and selecting “Post”.

4. Saving Post

Save the posted file in the following format:
[year-mm-dd]_[last name, first name]_[job #]

Ensure the “TechnoOsai IJ Arcs” is listed as the current post.

5. Post

After the file is posted, it will automatically open in Notepad.